
2
C H A P T E R

HTML AND XHTML BASICS

key part of understanding how to develop web pages is to know the syntax

rules and requirements of how to work with (X)HTML tags and their

attributes. In this chapter, you will review the different HTML and XHTML

standards available to web developers and will learn how to specify which version

you plan to use in your web documents. You will learn the different ways in which

elements are formulated and will review basic tag construction. You will also learn

how to configure tag attributes and to work with standard tag attributes. This

chapter will also explain how to improve the organization and presentation of

statements in your web pages and will provide advice on what to look for when

selecting a web host for your website.

Specifically, you will learn:

• About the six versions of (X)HTML and how to specify which version you are

working with using the html element

• How to work with single tags and tag pairs

• How to validate your (X)HTML documents

• How to modify element attributes

• How to comment your (X)HTML markup and to make effective use of white

space

A

PROJECT PREVIEW: LINKED JOKES APPLICATION
In this chapter’s web development project, you will learn how to create a new XHTML appli-

cation named linkedjokes.html. This web application will consist of three web documents.

The first document displays a pair of jokes, as shown in Figure 2.1.

FIGURE 2.1

Using the Apple
Safari browser to

load the
linkedjokes.html

page.

Answers to each joke are provided in two separate web documents, one per joke. To view the

answer for a given joke, the user must click on that joke’s link. Figure 2.2 shows the web page

that is loaded when the user clicks on the link for the first joke.

FIGURE 2.2

This page is
automatically

loaded when the
user clicks on the

first link on the
page.

HTML, XHTML, and CSS for the Absolute Beginner26

Likewise, to view the answer for the second joke, the user must click on that joke’s link.

Figure 2.3 shows the punch line that is displayed when the link for the second joke has been

clicked.

FIGURE 2.3

This page is
automatically

loaded when the
user clicks on the

second link
on the page.

SEPARATING PRESENTATION FROM CONTENT
The basic purpose of (X)HTML is to provide structure to web documents. It provides a collection

of elements that allow web developers to organize web documents in meaningful ways, iden-

tifying things like headings, paragraphs, and so on.

In the old days, before the widespread availability of CSS, web developers had limited control

over the presentation of text within their web pages. To cope with this problem, a number of

attributes were added to HTML that gave developers a bit of control over the appearance of a

web document’s content. However, this intermixing of content and presentation led to

markup code that was not always easy to understand and support because of all of the extra

presentation attributes that had to be added to document elements in order to try to manage

their appearance.

Finally, along came Cascading Style Sheets or CSS in the late 1990s. CSS is its own language

separate and distinct from (X)HTML. CSS allows web developers to define presentation rules

in a stylesheet, which can then be applied to (X)HTML elements. Style sheets can be defined

separately from markup inside web documents or externally in CSS files, separating content

from presentation even further. Once created, external style sheets can be applied to any

number of (X)HTML documents, allowing for the centralized administration of presentation

for any number of web documents using a single style sheet.

Chapter 2 • HTML and XHTML Basics 27

Thanks to the widespread use of CSS, web developers can now separate content from presen-

tation by using (X)HTML to outline a web document’s design and organization and CSS to

specify the appearance of that content. The result is web documents that are significantly

easier to understand and update. The focus of this chapter is on the development of properly

structured or well-formed (X)HTML. Concerns over presentation will be saved for later chapters.

THE SIX FLAVORS OF (X)HTML
In total there are currently six different versions of HTML and XHTML, referred to collectively

throughout this book as (X)HTML. There are three current versions of HTML named Transi-

tional, Frameset, and Strict and three roughly parallel versions of XHTML also named

Transitional, Frameset, and Strict. You specify which version of HTML or XHTML you are

working with in a special element located at the beginning of every (X)HTML page known as

the Document Type Declaration or DOCTYPE element. The DOCTYPE element tells web browsers

what version of (X)HTML is being used so that the browser knows what set of rules to follow

when rendering and displaying the document’s content.

Technically, the DOCTYPE declaration is not an HTML element. Its sole purpose is to indicate a

document’s type. It must be placed at the top of all (X)HTML documents and must be defined

exactly as outlined in the sections that follow, with no variation in syntax or capitalization.

Other than white space, no other statements may precede the DOCTYPE declaration.

Technically speaking, to be compliant with XML standards, all XML documents
should include an XML declaration statement before the DOCTYPE declaration.
The XML declaration statement is used to identify the document as an XML
document and to specify the document character encoding method. An example
of an XML declaration statement is shown here:

<?xml version="1.0" encoding="UTF-8"?>

Unfortunately, not all web browsers, most notably Internet Explorer, are able
to properly interpret the XML declaration statement. As a result, these browsers
may render web pages inconsistent with your expectations. Because of limited
browser support, it is best to omit the XML declaration statement.

HTML Standards
As already stated, there are three different current versions of HTML, each of which defines

a similar but slightly different standard that specifies the rules that must be followed in order

to generate well-formed documents.

TRAP

HTML, XHTML, and CSS for the Absolute Beginner28

HTML 4.01 Transitional
HTML 4.01 Transitional supports all HTML elements, including a number of presentation

elements. Its purpose is to help web developers make the transition from earlier versions

of HTML to HTML 4.01. To work with this version of HTML, you must add the following

DOCTYPE element to be beginning of your HTML pages, typed exactly as shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

HTML 4.01 Frameset
HTML 4.01 Frameset is identical to HTML 4.01 Transition but includes added support for deal-

ing with frames. Frames are an older web development methodology in which web pages were

organized into different sections or frames, into which separate HTML pages are loaded. To

work with this version of HTML, you must add the following DOCTYPE element to the beginning

of your HTML pages, exactly as shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"

 "http://www.w3.org/TR/html4/frameset.dtd">

HTML 4.01 Strict
HTML 4.01 Strict excludes support for older presentation-based HTML elements, deferring to

CSS to provide for web page presentation. Well-formed HTML pages that use this version will

display more consistent results when rendered by different web browsers. To work with this

version of HTML, you must add the following DOCTYPE element to the beginning of your HTML

pages, typed exactly as shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

XHTML Standards
As is the case with HTML, there are also three different current versions of XHTML. All three

are similar but vary slightly in regards to the rules that must be followed in order to generate

well-formed documents.

XHTML 1.0 Transitional
XHTML 1.0 Transitional, as its name implies, is a version of XHTML designed to support web

developers who are in the process of converting from HTML to XHTML. As such, it retains

support for a number of deprecated features, which, if present do not prevent a document

from being well formed. To work with this version of XHTML, you must add the following

DOCTYPE element to the beginning of your HTML pages, exactly as shown here:

Chapter 2 • HTML and XHTML Basics 29

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

XHTML 1.0 Frameset
XHTML 1.0 Frameset is designed to support web pages that still rely on the use of framesets.

A frameset is a mechanism for laying out web pages into separate frames or panes, each of

which displays its own web page. Frames are a deprecated feature in both Strict and Transi-

tional XHTML. To work with this version of XHTML, you must add the following DOCTYPE

element to the beginning of your HTML pages, exactly as shown here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

XHTML 1.0 Strict
XHTML 1.0 Strict, as its name implies, is the most stringent of the three versions of XHTML.

As such, presentation and other deprecated features are not allowed and syntax rules must

be rigidly adhered to in order for an XHTML document to be regarded as being well formed.

To work with this version of XHTML, you must add the following DOCTYPE element to the

beginning of your HTML pages, exactly as shown here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Unless otherwise specifically noted, all of the examples that are presented in this book will

be done using XHTML 1.0 Strict.

Back in the early days of CSS, web browsers did not provide uniform levels
of support for the language. Browsers of the day often interpreted CSS in
accordance with their own rules in place of the official standard. To overcome
this challenge, browser developers introduced DOCTYPE switching. With
DOCTYPE switching, browsers assume that any document with a properly de-
fined DOCTYPE is well formed and exactly follows the standard applications to its
definition and will render the page in compliance mode.

If, however, the DOCTYPE is not properly defined or present, the browser will
render the document in quirks mode. Quirks mode is more lenient than compli-
ance mode and may result in less than desirable presentation of the document.
In contrast, documents rendered in compliance mode are rendered in a far more
predictable manner.

TRAP

HTML, XHTML, and CSS for the Absolute Beginner30

THE HTML ELEMENT
The html element marks the beginning of a document’s markup and is referred to as the

document’s root element. In (X)HTML documents the html element is defined by an opening

<html> tag and a corresponding closing </html> tag. In HTML documents the html element is

used without any attributes, as demonstrated here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

<html>

 <head>

 </head>

 <body>

 </body>

</html>

In XHTML documents, you must include a required xmlns attribute in the head element and

assign it a value of http://www.w3.org/1999/xhtml. This attribute specifies the location where

the XHTML namespace resides. This namespace defines all of the elements and attributes

supported by XHTML.

In addition, you should specify the optional lang and xml:lang attributes. These attributes

specify the language in which the web document has been written. The following example

demonstrates how the html element will appear in all of the XHTML examples that you will

see in this book.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 </head>

 <body>

 </body>

</html>

XHTML is based on XML. XML is an extensible markup language. It allows for the
creation of custom elements. However, XHTML 1.0 only supports a predefined
collection of elements as specified in its namespace. XHTML 1.0 does not
support the definition of custom elements. XHTML 1.1 and XHTML 2 will allow

HINT

Chapter 2 • HTML and XHTML Basics 31

http://www.w3.org/1999/xhtml

web developers to introduce custom elements through the development of a
customized namespace. However, neither of these versions of XHTML has been
published as an official standard yet.

DISSECTING (X)HTML MARKUP
(X)HTML consists of numerous elements that you must learn how to use as a web developer.

(X)HTML elements are made up of tags. Tags are used to mark the beginning and end of

document content. Tag names are descriptive. They instruct web browsers as to the type

of content they contain, so that the browsers will know how to render the document’s

content.

(X)HTML tags are enclosed within < and > brackets. The opening bracket (<) identifies the

beginning of the tag. It is followed by the tag name. Tag names end with a closing bracket

(>). (X)HTML consists of many different tags, each of which serves a different and distinct

purpose. For example, the <p> tag specifies the beginning of a paragraph and the <h1> tag

specifies the beginning of a heading.

Tag Pairs
Most (X)HTML tags work in pairs, including a start and an end tag. Tag pairs have the following

syntax.

<tag>content</tag>

Here, content represents the content that is embedded within the two tags. The start tag

identifies the beginning of an element and the end tag identifies where the element ends.

For example, the following elements are all made up of tag pairs.

<h1>Little Red Riding Hood</h1>

<p>There once was a little girl named Little Red Riding Hood.</p>

Here, the first pair of tags defines a level one heading. It begins with the <h1> start tag and

ends with the </h1> tag. The second pair defines a paragraph. It begins with the <p> tag

and ends with the </p> tag. As you can see, all end tags include a / character, which sets them

apart from start tags. These two tags and everything in between them is an element. Elements

form the building blocks with which (X)HTML documents are created.

As already stated, (X)HTML supports two primary types of tags: tag pairs and single tags. A pair

tag is a set of two tags that identify the beginning and the ending of an element. Figure 2.4

provides a high-level breakdown on the components of an (X)HTML element tag pair.

HTML, XHTML, and CSS for the Absolute Beginner32

FIGURE 2.4

Elements are
composed of an

opening tag,
content, and a

closing tag.

As depicted in Figure 2.5, elements also consist of attributes.

FIGURE 2.5

An attribute is
made up of a name

and an assigned
value.

Single Tags
Not all elements require closing tags. Elements that do not have an end tag are referred to as

single or empty tags. Single tags do not contain any contents. While HTML will let you get

away without supplying an end tag in many situations, XTHML mandates that all elements

must be closed. To comply with this rule, all single tags are self-closed, which is accomplished

by placing a / before the closing >, as demonstrated here:

<tag/>

Unfortunately, since XHTML is based on XML and older browsers do not support XHTML,

problems arise when these browsers attempt to process XHTML pages within single tags. To

prevent these browsers from running into trouble when they try to render your web pages,

you need to include a blank space in front of the closing / character, as demonstrated here:

<tag />

This little trick allows older browsers to ignore the closing slash, since it’s not supported.

Newer browsers, on the other hand, are smart enough to ignore the extra space and correctly

interpret the tag. Three examples of how you should formulate single tags are provided here:

<hr />

The first tag is used to insert a line break. The second tag inserts a horizontal rule (a line)

across a web page, and the third example uses an image element () to insert an external

image file into the web page at a specified location. Don’t worry right now what each of these

tags do. You learn about them in greater detail later in this book.

Chapter 2 • HTML and XHTML Basics 33

This book teaches you how to work with both (X)HTML and CSS. One easy way
to determine which type of content you are looking at is to look and see if code
has been embedded within the < and > characters (e.g., (X)HTML) or within
{ and } characters (e.g., CSS).

LEARNING MORE ABOUT TAGS
Throughout this book you will be introduced to different types of tags, all of which support

a host of different attributes. While you will be introduced to many of the elements that

support these tags, there is not enough room in this book to define and present every possible

attribute belonging to every available (X)HTML tag. Instead, you’ll be introduced to the most

commonly used tags and the most commonly used attributes.

If you find that you need to know more about any of the tags or tag attributes covered in this

book, you can visit http://www.w3schools.com/tags/default.asp, as shown in Figure 2.6.

FIGURE 2.6

Detailed
information about

every HTML and
XTHML tag is

available online.

HINT

HTML, XHTML, and CSS for the Absolute Beginner34

http://www.w3schools.com/tags/default.asp

As shown in Figure 2.6, the HTML 4.01 / XHTML 1.0 Reference at www.w3schools.com provides

information about every available tag. To review a document for a given tag, all you have to

do is click on its tag name and you will be presented with everything there is to know about

the tag, as demonstrated in Figure 2.7.

FIGURE 2.7

An example of the
information that is

returned when
you look up the

 tag.

As shown in Figure 2.7, the information provided about each tag includes an example of its

usage, a list of browsers that support it, an explanation of differences in the way the tag is

supported between HTML and XHTML, and a detailed listing of all the tag’s attributes.

MARKUP VALIDATION
In order to render (X)HTML documents in a consistent and predictable manner, you must

ensure that they are well formed, meaning that your document should strictly adhere to

whatever HTML or XHTML standard you have decided to work with. In this book, that’s XHTML

Strict. Failure to create well-formed documents will result in unpredictable results.

Chapter 2 • HTML and XHTML Basics 35

www.w3schools.com

Beyond taking care when developing your (X)HTML documents, you can ensure that your

documents are well formed by taking advantage of a free markup validation service provided

by W3C, located at validator.w3.org as shown in Figure 2.8.

FIGURE 2.8

Use the W3C
markup validation
service to ensure
that all your web

pages are valid and
well formed.

Using this free service, you can ensure that all of your web documents are valid and there-

fore should render in most web browsers in a consistent and predictable manner. You can

use this service in any of three ways. First, if you have uploaded your document to the Inter-

net, you can enter its URL. Second, if your web page still resides on your computer, you can

upload it as a file. Finally, you can copy and paste the contents of your page into a form

provided by the service. Regardless of which option you select, the service will analyze your

markup and display its results, allowing you to ensure that your (X)HTML documents are

well formed and to fix them if they are not.

HTML, XHTML, and CSS for the Absolute Beginner36

Most web browsers are able to deal with documents that are not well formed.
However, the results generated from (X)HTML documents that are not well
formed may cause less than desirable results that differ from browser to
browser.

Figure 2.9 shows an example of the results you will see when an HTML 4.01 document is

well formed.

FIGURE 2.9

Error and Warning
messages would

have been
displayed if the

document was not
well formed.

Similarly, Figure 2.10 shows the results that are displayed when an XHTML 1.0 Strict docu-

ment is well formed.

HINT

Chapter 2 • HTML and XHTML Basics 37

FIGURE 2.10

Well-formed
markup should

display
consistently in
different web

browsers.

CONFIGURING ELEMENT ATTRIBUTES
Most (X)HTML elements support a range of attributes, which you can modify to configure the

appearance and behavior, or the element based on its use in current circumstances. Like all

XHTML syntax, attributes must be spelled in all lowercase. HTML allows for both upper- and

lowercase. For example, the anchor element <a> uses the href attribute to specify the URL to

which the link points, as demonstrated here:

Microsoft’s website

Attributes are always specified after the element name and are only allowed in opening ele-

ments or in single elements before the self-closing tag. Most elements support a number of

different attributes, allowing you to specify as many as you want in any order that makes

sense to you, provided you separate each with a blank space. Note that according to XML

syntax rules, you must specify attribute values within matching double-quotation marks

using the syntax outlined here:

<tag attribute="value" attribute="value" . . . attribute="value">

HTML, XHTML, and CSS for the Absolute Beginner38

(X)HTML elements support many different types of attributes. Many attributes are limited

to specific values while others can take any text value you assign them. To determine

which types of attributes are supported by each type of (X)HTML element, visit http://

www.w3schools.com/tags/default.asp.

Element attributes are made up of an attribute name followed by the equals sign and then

an assigned value, as demonstrated here:

<p id="Intro">A long time ago in a far away land…</p>

Here, a paragraph element has been assigned an id of Intro. Id is a universal attribute that

can be assigned to any (X)HTML element. The id attribute will allow the paragraph to be

referenced from elsewhere within the document, perhaps by a CSS style rule that set the font

type, style, or size of the text that makes up the paragraph. Note that the quotation marks

around the id, though optional in HTML, are required in XHTML strict.

STANDARD ELEMENT ATTRIBUTES
As you learn different (X)HTML elements throughout this book, you will be introduced to

many of the attributes that the elements support. However, there are a number of universal

attributes that are common to just about every element. Use of these elements is entirely

optional but often helpful. These elements are outlined below and demonstrated throughout

the rest of the book.

title

title is an optional attribute that is used to assign a title to an element. Most browsers display

the contents specified by the title in a tooltip when the mouse pointer is moved over the

rendered element.

id

id is an optional attribute that specifies a unique name or identifier for an element, allowing

the element to be referenced elsewhere, typically by CSS or JavaScript. When assigning a name

to an id, the following rules apply:

• Each ID must be unique throughout the document

• Class names are made up of letters and numbers

• Class names are also limited to the following special characters: underscore (_) and

hyphen (-)

Chapter 2 • HTML and XHTML Basics 39

http://www.w3schools.com/tags/default.asp
http://www.w3schools.com/tags/default.asp

class

class is an optional attribute used to define an element as being part of a class, allowing it

along with all elements of that class to be referenced as a group. Any number of elements can

be assigned to the same class. In addition, an element can be assigned to two or more classes.

Classes are often used in conjunction allowing all elements within the same class to be

assigned the same presentation rules. Classes are also used in conjunction with scripting.

When working with classes, the following rules apply:

• When an element is assigned to more than one class, class assignments must be sepa-

rated by spaces

• You may use any letter or number

• The first character must be a letter

• Except for the underscore (_) and hyphen (-) no special character can be used

style

The optional style attribute allows you to embed inline styling inside elements. Inline styles

are seldom used by web developers, who generally defer to external style sheets and their

inherent benefits. External style sheets are covered in Chapters 7 and 8.

UNDERSTANDING ELEMENT LEVELS
There are two ways of working with (X)HTML elements, block level and inline. Block-level

elements are used to display content on its own line, separate from other contents. Inline

elements are designed to enclose small amounts of text embedded within block-level

elements.

Working with Block-Level Elements
Block-level elements are elements that display their content on their own line, apart from

other element content. An example of such an element is the p (paragraph) element, which

is used to organize text into its own separate block, as demonstrated here:

<p>Perhaps today is a good day to die!</p>

Other examples of block-level elements include the div element and each of the heading

elements (h1, h2, h3, h4, h5, and h6).

Embedding Inline Elements
Inline elements enclose smaller amounts of text for the purpose of highlighting them in some

fashion. Block-level elements can stand on their own within an (X)HTML document. They may

HTML, XHTML, and CSS for the Absolute Beginner40

also be embedded within other block statements. Inline elements cannot stand on their

own. To use them, they must be embedded within a block-level element as demonstrated here:

<p>The first letter of people’s names <should< always be

capitalized.</p>

In this example, the inline strong element, which places strong emphasis on a word or words,

has been embedded within a p element. An inline element can, however, contain another

inline element provided the outer inline element resides within a block-level element, as

demonstrated here:

<p>The first letter of people’s names should always

be capitalized.</p>

Here, the em element has been added around the strong element to further add emphasis to

a word within a p element.

Nesting Elements
Most (X)HTML elements allow you to embed them within other elements. You must properly

nest embedded elements to provide valid and well-formed (X)HTML documents. Otherwise,

errors will occur, as demonstrated in the following example.

<p>The first letter of people’s names should always

be capitalized.</p>

Here, the em and strong elements are not properly embedded.

When embedded elements are within one another, it is essential that you remember to com-

plete the inner element before you close the outer tags, as demonstrated here:

<div><p>Hello World!</p></div>

Failure to follow this simple rule will result in errors. An example of improperly nested ele-

ments is provided here:

<div><p>Hello World!</div></p>

Some (X)HTML elements are specifically designed to be used in a nested manner. Examples

of these types of elements include the , which defines an ordered list, and element,

which defines an item within a list. The following example demonstrates these two types.

Chapter 2 • HTML and XHTML Basics 41

 Apples

 Oranges

 Pears

 Grapes

COMMENTING YOUR MARKUP
(X)HTML consists of a collection of English-like tags, which is the basis for defining elements.

Despite this, (X)HTML documents can be quite complex. One way to make your document

easier to understand and support is to embed comments inside your documents that explain

what is going on and why you have laid out your documents in the manner you have.

(X)HTML comments are created by embedding text within an opening <!-- tag and a closing

--> tag. For example,

<!-- The following paragraph introduces the story’s main character. -->

<p>Once upon a time there was a wizard named Gandor.</p>

If you need to, you can spread comments over multiple lines, as demonstrated here:

<!-- The following paragraph introduces

the story’s main character. -->

<p>Once upon a time there was a wizard named Gandor.</p>

One common use of comments is to temporarily comment out one or more
elements when developing and testing documents. For example, when trou-
bleshooting a problem with a document you might temporarily comment out
one or more elements that you suspect to be the source of the problem in order
to see how the rest of the document is rendered when those elements are not
processed.

Web browsers will not display the contents stored in a document’s embedded comments. You

should use them liberally throughout your documents to document every major part of the

document.

IMPROVING DOCUMENT ORGANIZATION WITH WHITE SPACE
One nice feature of (X)HTML is that you are permitted to use white space at will for improved

formatting of your documents without affecting the document in any meaningful way (other

than increasing its size). You add white space to your documents by inserting extra spaces

and line breaks into your documents.

TRICK

HTML, XHTML, and CSS for the Absolute Beginner42

When web browsers load (X)HTML documents, they automatically ignore all of the extra white

space by collapsing all extra space down to a single space. For example, in the following

example, extra white space has been added before and after different elements in order to

make the resulting statements easier to view and maintain.

<div>

 <p>

 Once there was a hero named Mighty Molly!

 </p>

</div>

When rendered by the browser, the output generated by this example is identical to that

generated by the following example. However, as you can see, it is clearly easier to view and

understand what is going on in the first example thanks to the extra white space.

<div><p>Once there was a hero named Mighty Molly!</p></div>

Likewise, this third example will be rendered in an identical manner.

<div>

 <p>

 Once there was a hero named

 Mighty Molly!

 </p>

 </div>

As this example shows, the overuse of white space in this third example has become anti-

productive. Obviously too much of a good thing is not always good. When rendered by the

browser, this example’s output, shown next, is the same as the other examples.

Once there was a hero named Mighty Molly

Chapter 2 • HTML and XHTML Basics 43

If you need to preserve white space, you can enclose your content within the
pre element, covered in Chapter 4.

FINDING A WEB HOST FOR YOUR WEB PAGES
In Chapter 1, you learned how to create a web page and test it by using the browser to open

a copy of the web page stored on your own computer. However, in order to be able to share

your website with the rest of the world, you need to upload your web documents to a web

server. A web server is simply a specially configured server that is connected to the Internet

and whose purpose is to accept requests from web browsers and return specified web pages

and other types of content.

If you do not already have a web host, there are a number of different ways of finding a good

web host for your web pages. You could begin your search by checking with your Internet

service provider. Sometimes Internet service providers offer their customers a little web server

space as part of their service. Another option for finding a host for your web pages is one of

any number of free website hosts like Google (http://googlewebhosting.net/). The price that

you pay for free services like this is the display of advertisements on your web pages, typically

in the form of banners. A third option that you can pursue is to find a web host provider. You

have to pay a little for this service but it is often the best choice. For as little at $7.95 per

month, a good web host provider will provide you with space to store your best pages, multiple

e-mail accounts, support for advanced features like PHP, MySQL, Ruby on Rails, Perl, Python,

website statistics, and many other options. An example of one such web host is site5

(www.site5.com).

Once selected, your web host will provide the URL of your website, which might be something

like www.hostname.com/sitename. Here, hostname is the name of your web host and sitename is

the name of your website.

Once you have found a web host you are comfortable with, your provider will give you

instructions on how to access your website and how to upload and manage your web pages.

Most web hosts allow you to upload web pages one of two ways. First, you are usually given

a graphical user interface through which you can upload and manage your web documents.

Second, you can usually use FTP, which stands for File Transfer Protocol. Using an FTP client and

the FTP address provided by your web host, you can upload and download files from your

website. You’ll also be able to create a folder structure within which to store your files.

There are a number of very good FTP clients available for download on the
Internet. Examples include FileZilla (filezilla-project.org/).

HINT

HINT

HTML, XHTML, and CSS for the Absolute Beginner44

www.site5.com
http://googlewebhosting.net/

Once you have uploaded your web pages, you can then access and view them using your web

browser.

BACK TO THE LINKED JOKES PROJECT
Now it is time to return your attention to the Linked Jokes project. In this project, you will

create three separate XHTML documents. The first document will display two jokes, each of

which is also a link that when clicked instructs the browser which of the other two XHTML

documents it should load. As you can see, rather than display the jokes and punch lines all

on the same web page, this chapter’s project uses links to control navigation from a primary

page to two other pages.

Designing the Application
As was the case with preceding chapter projects, you will develop the Linked Jokes project in

a series of steps as outlined here:

1. Create the project’s HTML documents.

2. Develop the document’s markup.

3. Load and test the HTML page.

What makes this project different from the HTML Jokes project that you created in Chapter 1

is the movement of joke punch lines to external web pages, which are loaded and displayed

in the web browsers when their corresponding links are clicked.

Step 1: Creating New HTML Document
The first step in the creation of this project’s web document is the creation of the empty

text files. Begin by opening your preferred code or text editor and creating and saving the

following three files, using the names outlined here:

• LLinkedJokes.html. The main landing page whose URL visitors will use to view this web

application.

• PPunchLine1.html. A web page that is loaded when visitors click on the link for the first

joke on the LinkedJokes.html document.

• PPunchLine2.html. A web page that is loaded when visitors click on the link for the

second joke on the LinkedJokes.html document.

Step 2: Developing the Document’s XHTML
The next step in creating the Linked Jokes project is the development of the markup for all

three of the project’s web documents. Begin by adding the following elements to the

LinkedJokes.html document.

Chapter 2 • HTML and XHTML Basics 45

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 </head>

 <body>

 </body>

</html>

These statements include the DOCTYPE element and the base set of elements required to build

an XHTML page. The next step in the development of the Linked Jokes project is to finish the

LinkedJokes.html document and to create the project’s other two documents.

Completing the LinkedJokes.html Document
To complete the LinkedJokes.html document, you need to modify it by embedding the meta

and title elements as shown next. The meta element specifies the content type and character

set used by the document and the title element specifies a text string that will be displayed

in the web browser’s titlebar.

<head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 2 - LinkedJokes</title>

</head>

You also need to update the document’s body section by modifying it, as shown here:

<body>

 <h1>Linked Jokes</h1>

 What does Mickey Mouse's wife drive?

 How do you fix a tooth?

</body>

This markup consists of a level 1 heading and two links that display the document’s jokes.

When clicked, these links instruct the browser to load and display the documents specified

by each link’s href attribute.

HTML, XHTML, and CSS for the Absolute Beginner46

Creating the PunchLine1.html Document
Next, open the PunchLine1.html documents, add the following statements to it, and then

save the file.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 2 - PunchLine1</title>

 </head>

 <body>

 <p>A Minnie-van</p>

 </body>

</html>

As you can see, this web document is very similar to the LinkedJokes.html pages, except that

instead of two links, it displays a paragraph showing the punch line for one of the game’s

jokes.

Creating the PunchLine2.html Document
Lastly, open the PunchLine2.html documents, add the following statements to it, and then

save the file.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 2 - PunchLine2</title>

 </head>

 <body>

 <p>With Toothpaste</p>

Chapter 2 • HTML and XHTML Basics 47

 </body>

</html>

As you can see, the only difference between this and the PunchLine1.html document is the

content stored in the title element and the content located in the body section’s paragraph

element.

Step 3: Loading and Testing Your New Web Documents
At this point, all three documents that make up the Linked Jokes project have been completed

and you are ready to load and view the results of your work. To do so, open your favorite web

browser and then execute the following procedure.

1. Click on the browser’s File menu and select the Open File command. This displays a

standard file open dialog.

2. Using the dialog window, navigate to the folder where you stored the web page and

select it.

3. Click on the Open button. The browser will then load and display the specified document

as was demonstrated back in Figure 2.1.

If anything looks out of place on your version of this project, go back and recheck your work.

If, after clicking one of the links located on the main page you see an error indicating that

the specified web page cannot be found, double-check the URL that you entered into the

browser and make sure that the case used within the links matches the case you used when

you saved both the PunchLine1.html and PunchLine2.html files.

SUMMARY
This chapter provided an overview of (X)HTML syntax rules and outlined the requirements of

how to work with tags and tag elements. You learned about all six (X)HTML standards, how

they compare to one another, and how to specify the one you want to work with in your web

document. You learned about the different ways in which elements are formulated and how

to construct tags. You were introduced to (X)HTML standard tags and learned how to improve

document organization and presentation using white space and comments. You also received

guidance on what to look for in a web host.

HTML, XHTML, and CSS for the Absolute Beginner48

Challenges

1. As currently written, the Link Jokes web application only

displays two jokes. Consider modifying it to suit your own

personal style by replacing or adding to its collection of jokes.

2. Consider adding more text to the document using the p

(paragraph) element that explicitly instructs the user to click

on a joke in order to see its punch line.

3. After making changes to your web documents, consider visiting

www.validator.w3.org and ensuring that they are still well

formed.

Chapter 2 • HTML and XHTML Basics 49

www.validator.w3.org

